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Abstract 

 
With the evolving complexity of connected vehicle features, the volume and diversity of data 
generated during driving continue to escalate. Enabling data sharing among interconnected 
vehicles holds promise for improving users’ driving experiences and alleviating traffic 
congestion. Yet, the unintentional disclosure of users’ private information through data sharing 
poses a risk, potentially compromising the interests of vehicle users and, in certain cases, 
endangering driving safety. Federated learning (FL) is a newly emerged distributed machine 
learning paradigm, which is expected to play a prominent role for privacy-preserving learning 
in autonomous vehicles. While FL holds significant potential to enhance the architecture of 
the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge 
to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is 
proposed which is efficient for reducing communication and protecting data privacy. By 
assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. 
An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized 
data processing and model training while reducing communication overhead. Simultaneously, 
the Local Differential Privacy (LDP) mechanism is incorporated during local training to 
safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and 
the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the 
proposed scheme can ensure data privacy effectively while reducing communication overhead. 
 
 
Keywords: Clustering, Federated Learning, Local Differential Privacy (LDP), Internet of 
Vehicles (IoV) 
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1. Introduction 

In the future, the realization of smart transportation systems relies on effective data sharing 
among intelligent vehicles, which enables the development of numerous innovative 
transportation applications. Autonomous driving is one of the most valuable applications of 
smart transportation systems. By communicating with each other and transport infrastructure, 
intelligent vehicles can share a set of sensor data, such as ultrasonic radar and camera data, 
and can enable cooperative driving by utilizing the data [1]. Cooperative driving enhances 
driving safety and the transportation system’s efficiency, thereby reducing traffic accidents 
and optimizing the schedule of traffic signals. Furthermore, intelligent vehicles can share 
crucial information about road and weather conditions, enabling other vehicles to plan their 
routes for avoiding traffic congestion. However, driving data sharing among intelligent 
vehicles will result in certain risks [2]. Firstly, while centralized cloud servers possess the 
capability to process data and derive decisions using global information, the collection of data 
from distributed vehicles contributes to increased communication latency [3]. Secondly, as 
vehicle data is commonly deemed private and vehicles exhibit reluctance to share their data 
with others, the central cloud encounters challenges in acquiring an accurate model owing to 
the scarcity of training data [4]. 

According to the above concerns, how to train a learning model safely and efficiently, is a 
critical research issue in intelligent transportation. Centralized training is one of the most 
common methods where the model training process occurs on a centralized server [5]. In this 
approach, mobile devices act as data collection and transmission devices, sending data to the 
centralized server for training. However centralized training needs to upload users’ sensitive 
data to a central server in which a global learning model is trained based on the uploaded data, 
so appropriate privacy protection approaches need to be considered in Internet of Vehicles 
(IoV).  
 Federated Learning (FL) is an emerging machine learning approach with the feature that 
training models in distributed manners [6]. Different from the centralized learning methods, a 
client performs FL tasks to transmit raw data to an edge server, which possesses sufficient 
computing power to execute the data learning process, instead of sending local training data. 
Therefore, the FL framework can provide an ideal solution for addressing the privacy 
challenges and mitigating data leakage in IoV. However, deploying FL in IoV needs to address 
new challenges. Firstly, the distribution of vehicles is notably dispersed in IoV, and the 
transmission and updates of model parameters between vehicles and RoadSide Units (RSUs) 
can lead to substantial communication cost. Secondly, while FL enhances data privacy through 
local model updates, potential privacy risks may persist. For example, it is possible that model 
parameters may inadvertently reveal some details about the local data distribution, leading 
opponents to infer that the updated model, which could compromise personal information 
related to the vehicle. 
 To address the above challenges, in this paper, we propose a clustering-based federated 
learning framework where the distribution of vehicles is often highly dispersed. Firstly, local 
data features are extracted from vehicles, aggregate similarity based on the extracted feature 
vectors, and divide the vehicles into different clusters. An optimal vehicle is selected as cluster 
head to communicate with RSUs. Then, during local training, the Local Differential Privacy 
(LDP) mechanism is integrated to ensure the privacy protection of local vehicle data. Our main 
contributions can be summarized as follows: 

 We propose a clustering-based federated learning approach to tackle the issue of 
elevated transmission costs resulting from the dispersed distribution of users within 



1464                                                                                              Jin et al.: Clustering-Based Federated Learning for  
Enhancing Data Privacy in Internet of Vehicles 

the Internet of Vehicles. In the pre-training phase, we extract local data features, 
conduct similarity clustering on the extracted feature vectors, and group vehicles into 
distinct clusters. Simultaneously, we establish communication channels between 
cluster heads and RSUs to reduce communication costs. 

 In order to protect data privacy, we use LDP to encrypt local vehicles to solve the 
problem of data leakage during transmission. 

 The experiments conducted on standard models and datasets demonstrate the 
significant efficacy of the proposed algorithms. 

 The rest of this paper is organized as follows. Section 2 outlines the related work concerning 
federated learning in IoV and distributed networks. Section 3 provides the problem definition. 
The proposed method is introduced in Section 4. Section 5 presents experimental evaluations 
of our scheme using two datasets. The concluding remarks are described in Section 6. 

2. Related Work 
In this section, we introduce the background and applications of FL in IoV. The data generated 
by vehicles, containing substantial private information like location and trajectory, poses a 
significant challenge in preserving data privacy during IoV data communication.  

Given the heterogeneous and dynamic nature of IoV, security has emerged as a paramount 
area of research. Federated Learning (FL) stands as a privacy-preserving distributed training 
framework, involving collaborative training of a unified Machine Learning (ML) model across 
diverse participants using their local datasets. The widely adopted Federated Average (FedAvg) 
algorithm [7] integrates local Stochastic Gradient Descent (SGD) on individual clients, which 
is then amalgamated by a central server through model averaging. FedAvg allows clients to 
execute multiple batch updates on their local data, exchanging updated weights rather than 
gradients. This approach notably amplifies communication efficiency and plays a crucial role 
in mitigating privacy risks. 

In transportation systems, FL has showcased its capability to offer intelligent services 
including autonomous driving, route planning, safety prediction, and precise vehicle detection, 
all while ensuring high training accuracy and preserving data privacy. Liu et al. [8] introduced 
the Federated Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow 
prediction based on FL. FedGRU operates without direct access to scattered organizational 
data. Instead, it utilizes a security parameter aggregation mechanism to facilitate training 
global models in a distributed manner. This mechanism involves aggregating gradient 
information from all locally trained models to construct a comprehensive global model tailored 
for prediction purposes. Lim et al. [9] considered a perceptual and collaborative learning 
scheme based on FL, specifically examining its application in Unmanned Aerial Vehicle 
(UAV) scenarios within IoV. Acknowledging the misalignment of incentives between the 
UAV and the model owner, the authors introduced a multi-dimensional contract-matching 
incentive design. This design aims to assign the UAV with the minimum marginal cost for 
node coverage to each subregion, thereby ensuring efficient task completion. 

FL has been applied to achieve distributed data sharing in vehicle networks. Samarakoon 
et al. [10] addressed the issue of joint power and resource allocation in Ultra-Reliable Low 
Latency Communication (URLLC), particularly within vehicle environments. They employed 
FL to estimate the tail distribution of the network-wide queue length, thereby gaining valuable 
insights into the network's overall state. Ye et al. [11] delved into FL's potential in the Internet 
of Vehicles (IoV) for image classification. They introduced a selective model aggregation 
method, which considers both local image quality and the computing power of each vehicle to 
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determine the most suitable local model for computation on the vehicle. Experiments 
conducted using real datasets have demonstrated that the proposed decentralized FL scheme 
exhibits superior accuracy and provides enhanced privacy protection compared to 
conventional centralized FL methods. Chai et al. [12] explored a federated learning framework 
for knowledge exchange within vehicle networks employing hierarchical blockchains. The 
proposed framework comprises two key chains: the ground chain and the top chain. The 
ground chain operates by employing multiple vehicles as FL clients, each conducting 
individualized learning processes using their respective hardware. Meanwhile, Roadside Units 
(RSUs) function as decentralized FL aggregators within the blockchain network, securely 
consolidating transactions within their coverage areas. Simultaneously, the top chain oversees 
multiple RSUs responsible for executing FL model computations. The results from FL are 
integrated into the block ledger, ensuring secure sharing between RSUs and vehicles, thereby 
upholding security and traceability. While FL transmits only updates to model parameters 
rather than raw data, thus reducing data transmission and conserving network bandwidth and 
energy consumption, there exists a potential risk of malicious attacks or data tampering by 
participants. Consequently, implementing adequate security mechanisms becomes imperative 
to uphold the integrity and credibility of the model. Zhao et al. [13] proposed an FL 
collaborative authentication protocol tailored for shared data. This protocol enables 
anonymous validation between vehicles, RSUs, and content servers (CS), ensuring 
simultaneous security of model parameters to protect privacy. However, the consolidation of 
these model parameters through a centralized CS introduces a potential single point of 
vulnerability. 

FL has also made contributions to enhancing data privacy in IoV. Lu et al. [14] introduced 
a two-stage mitigation scheme focused on intelligent data conversion and collaborative data 
leak detection. Unlike existing solutions, the proposed vehicle FL solution allows participants 
(such as vehicles) to use their data to train models locally without centralized administrators, 
which significantly contributes to protecting their data privacy. Additionally, collaborative 
mapping techniques are employed across multiple vehicles to guarantee the effectiveness of 
the processed information. This method allows for the translation of unprocessed data from 
diverse origins into the learning data framework. To counter privacy risks in the Internet of 
Things (IoT), Zhao et al. [15] introduced a novel technique that merges FL with differential 
privacy. The objective is to disrupt gradients produced by vehicles while preserving their 
usefulness, thereby preventing adversaries from deducing raw data, even if they access altered 
gradients. On the other hand, Pokhrel et al. [16] integrate Federated Learning (FL) with 
blockchain technology to devise a decentralized solution for vehicle system planning. In this 
approach, each vehicle functions as an FL client, executing machine learning models and 
exchanging computed updates through the blockchain ledger to verify their associated rewards. 
By leveraging blockchain, this method potentially mitigates challenges associated with 
traditional FL, particularly in handling extended communication durations and security 
vulnerabilities linked to external entities. However, while these studies primarily focus on 
safeguarding data privacy, they do not delve into addressing concerns related to 
communication expenses. 

Based on the characteristics of data privacy protection, FL has the potential to promote 
vehicle-to-vehicle (V2V) network resource management strategies. Zhang et al. [17] 
investigated an alternative strategy for resource allocation in vehicle-to-everything (V2X) 
communication. This method combines FL with Deep Reinforcement Learning (DRL) [18] to 
create a federated intelligent approach for allocating resources. The goal is to optimize the 
overall capacity of vehicle users while adhering to designated delay and reliability parameters. 
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Each vehicle user operates as a DRL agent, utilizing the Deep Neural Networks (DNN) 
algorithm to select optimal modes and allocate resources. At the same time, BS (Base Station) 
aggregates the updated information unloaded by the user and constructs an undirected graph 
using channel gain information. Cao et al. [19] introduced a federated solution leveraging 
mobile edge computing for managing caching and computing resources in vehicle networks. 
Specifically, vehicles collaborate with RSUs to engage in federated learning. Within this 
framework, each entity computes sub-gradient descent updates, contributing to joint parameter 
optimization aimed at minimizing system costs. 

The existing research efforts apply FL frameworks to IoV, solving the problem of model 
leakage that may occur during the upload process. However, the participation of each vehicle 
in communication leads to increased communication cost. Therefore, a clustered federated 
learning framework is proposed to reduce communication cost as well as protect data privacy.  

3. The Problem Definition 
In order to form clusters based on the data similarity, the features of the local dataset are 
extracted, and compare the distance between the obtained feature vectors. The set of vehicles 
is V = {v1, v2, …, vn}. The feature vectors R = {R1, R2, …, Rn}. The similarity between the 
feature vectors of vehicle vi and vehicle vj is: 
 ( )

2
sim i j i j, = −R R RR     (1) 

where ||||2 represents the Euclidean norm of the vector. 
 It is assumed that there are several intersections in IoV, with RSUs distributed on both sides 
of the road. Based on the similarity of the vehicle feature matrix, vehicles are divided into 
different clusters to communicate with RSUs. Optimal vehicles in each cluster are selected as 
the cluster heads for communication with RSUs.  

Each cluster head vi maintains a local dataset Di = {(a1, b1), …, (am, bm)}, where ai represents 
the input data for initial models, and bi denotes the corresponding expected output. For each 
cluster head vi, the objective is to train a global model Z = g (θ, a) using the training set D. The 
loss function Fi(θ) for Dataset Di is defined as: 
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where f j (g (θ, a), b) is the loss function for the j-th data sample (aj, bj) with model parameters 
θ. 
 We define the objective global loss function F(θ) as:  
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 In the phase of local model training, Local Differential Privacy (LDP) is employed to 
safeguard data privacy. LDP is a privacy protection technique that allows local devices to 
perform noise perturbation on gradient updates before uploading them. The advantage of this 
technology is that it can still provide meaningful contributions to global model updates while 
protecting data privacy. Compared with technologies such as homomorphic encryption and 
secure multi-party computing (SMC), LDP typically has lower computational costs and higher 
efficiency, as it only adds some noise on local devices without the need for complex encryption 
operations. Meanwhile, since it does not require large-scale modifications to algorithms or 
communication protocols, LDP can usually be more easily integrated into existing federated 
learning frameworks. In summary, although other encryption techniques can also be used for 
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data privacy protection, LDP may have more advantages in specific situations, especially when 
considering computational costs, implementation difficulties, and flexibility in federated 
learning. The Gaussian mechanism is utilized to introduce noise to the updated models of 
individual vehicles, aiming to perturb the parameters. The mathematical representation of this 
process is illustrated in the following equation: 
 ( ) ( )( )' 2 2( ) ( 1) ( 1) 0,i i t i i ft t F t S= − + ⋅ ∇ − + ⋅θ θ α θ ζ σ  (4) 

where ( )2 20, fS⋅ζ σ is the added Gaussian noise with mean 0 and standard deviation σ · Sf . In 
cases where gradients significantly impact the global model, a lower privacy cost (i.e., less ε) 
should be introduced to safeguard privacy as the gradients approach convergence. Conversely, 
if the gradients fail to meet the necessary contribution level, a higher privacy cost is allocated, 
resulting in the addition of less noise to the gradients.  
 After completing the training of the local model, the subsequent phase involves training a 
global model capable of acquiring more comprehensive insights by amalgamating multiple 
clusters, thereby enhancing the overall performance of the global model. The aim of FL is to 
train a global model Z = g (θ, a) in IoV. This process constitutes an optimization problem that 
seeks to minimize F(θ) i.e.:  
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where θ(t) represents the aggregated model's parameters at round t and T denotes the maximum 
number of updating rounds. ( ) ( ) ( )Pr exp Pri d i d

′∈ ≤ ∈θ δ ε θ δ is the ε-privacy guarantee for 
update parameters θi, and θ(t) is formulated as follows: 
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where Δθi is the update from vehicle vi in round t. 

4. Proposed Method 
In this section, a clustering method based on FL in IoV has been proposed. The first step is to 
pre-train the local data of the vehicles. The feature extraction in the preprocessing stage is the 
process of converting raw data into features that can be used by federated learning models, 
including extracting useful features from raw data such as vehicle sensor data, driving control 
data, GPS data, vehicle status, etc. The feature extraction process is shown in Fig. 1.  
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Fig. 1. Feature Extraction 
  
After completion of the pretraining process, the subsequent step involves vehicles uploading 
their feature vectors to RSUs. Subsequently, the RSUs divide the vehicles into distinct clusters 
based on the similarity observed among the feature vectors. 
 Given two feature vectors Ri and Rj, according to the definition of the Euclidean norm, the 
distance between Ri and Rj can be computed as: 

 ( ) ( ) ( ), , , , , ,i

2 2 2

i i j i i j j j i n j n2j R R R R R R− = − + − +…+ −R R  (7) 

where Ri,j represents the value of the i-th row and j-th column element of the feature vectors. 
When we use the feature vectors of vehicles as input, these vectors typically represent 

various attributes and characteristics of the vehicles. If two vehicle feature vectors are very 
close in each dimension, their positions in the feature space will also be very close, and we 
can consider them as similar in the feature space. Based on the similarity results obtained, we 
can divide the vehicles into different clusters. 

Within a cluster, the vehicle exhibiting a stable speed and route will be chosen as the cluster 
head. The duration allocated for communication is determined by the period during which 
participating vehicles remain within proximity. Let the coverage area diameter of an RSU be 
represented as B. For each vehicle k, the time spent within the coverage area of the current 
RSU is defined by equation (8): 

 k
k

kq
B xT −

=  (8) 

where xk denotes the position of the k-th vehicle that represents the distance to the entrance, 
and qk is the speed of the k-th vehicle. 

To guarantee communication with the RSUs, the total time spent stationary by a vehicle k 
chosen as the cluster head should adhere to the condition (tk

train + tk
up + tagg) ≤ Tk. Where, tk

train 
and tk

up  represent the estimated training and upload times of vehicle k respectively, while tagg 
signifies the time needed for aggregation. The standing time refers to the period a vehicle 
remains within the RSUs' coverage area, primarily influenced by the position and speed of 
connected vehicles. Extending the duration of stationary time within the coverage area ensures 
the completion of the training process and the timely delivery of its outcomes. Therefore, a 
vehicle that has the maximum standing time Tk will be elected as the cluster head. 
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Then the cluster heads will train local models and communicate with RSUs. 1) RSUs 
distribute the initial global model to the vehicles that are selected as cluster heads. 2) After 
receiving the global model, the vehicles iteratively train the model using local data, 
incorporating the LDP mechanism during the training process, and then generate local models 
through gradient descent. 3) Vehicles that are selected as cluster heads upload trained local 
models to RSUs. 4)The global model aggregation is performed in RSUs. The specific process 
is shown in Fig. 2.  

 
Fig. 2. Communication Process of Cluster FL in IoV 

 
By utilizing communication between cluster heads and RSUs, we have realized the low-

cost transmission of clustered FL, concurrently training the optimal global model with minimal 
loss. The specific algorithm details can be summarized in Algorithm 1, as shown in Table 1. 

Table 1. Optimization algorithm 

Algorithm 1  Clustering-based FL in IoV 
Input Participated vehicle i, number of vehicles n, dataset D={di}, cluster head CH 
Output 
 

global model Z 
Initialize the global model, batch_size, n_cluster  

1. Client executes: 
2 for each vehicle i ∈ {1, 2, …, n} 
3. Pre-train the local datasets di and transform the raw data into feature vectors Ri 

through feature extraction 
4. Upload Ri to RSUs 
5. end for 
6. RSUs execute: 
7. calculate the similarity between feature vectors of the vehicle i and vehicle j

( )
2

sim ,i j i j= −R R R R
 

8. divide vehicles into different clusters based on similarity 
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9. 
select the CHs which has the maximum standing time k

k
kq

B xT −
=  

10. Client executes: 
11. for each local epoch e < E 
12. Extract the mini batch datasets randomly from the local dataset di 
13. Train a new model based on its mini batch local dataset di ⊂ D 
14. Compute the noise-added for local differential privacy ( )2 20, fS⋅ζ σ  
15. 

Gradient update 
0

1( 1) ( )
K

i
i

t t
K =

+ = + ∆∑θ θ θ  

16. 
Compute loss function 

1( ) (g( , ), )
i

i j
j Di

F af b
D ∈

= ∑θ θ  

17. end for 
18. RSUs execute: 
19. for each round r: 
20. Receive models uploaded by CHs 
21. Aggregation to generate global model Z 
22. end for 

In the above process, we utilize gradient descent, an efficient iterative optimization 
technique, to minimize the loss function and derive a global model. This optimal solution is 
achieved through multiple iterative training processes where we adjust the learning rate. 
Gradient descent operates by minimizing the objective function F(θ) via parameter updates in 
the opposite direction of the function's gradient, denoted as −∇F(θ). The aim of local training 
for a cluster head vehicle vi is to compute the model parameters θi by progressing towards the 
direction of −∇Fi(θ), as specified in the following equation:  
 ( )( )

( )
,

( ) i i
i

i

F b f a
f a

F
∂

∇ =
∂

θ
 (9) 

For the cluster head vi in iteration t, a local update model θi(t) is computed based on the 
following equation:  
 ( )( ) ( 1) ( 1)i i t i it t F t= − + ⋅∇ −θθ θ α  (10) 
where αt is the step size for moving in the direction of the opposite gradient. By gradient 
descent update, we can obtain the minimum loss function and train an optimal global model Z 
for data security optimization of IoV.  

5. Experimental Evaluation 
We present numerical experiments to evaluate the proposed algorithm. The Pytorch-based 
simulations are implemented on a PC with a CPU (Intel(R) Core (TM) i5-10500). The memory 
of the PC is 32 GB. In the experiment, we set the number of vehicle users to 30 and the number 
of clusters to 5, with the aim of conducting effective clustered federated learning in a simulated 
urban vehicle network environment, and fully reflecting the data distribution and 
characteristics in the urban vehicle network. Choosing 30 vehicles as users can ensure that our 
dataset has a certain degree of diversity, which can better reflect the data distribution and 
characteristics in the urban vehicle network. This can ensure the reliability and repeatability 
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of the experimental results, and enable us to better understand and analyze the differences 
between different vehicles. Dividing 30 vehicles into 5 clusters can simplify the complexity 
of data analysis and result interpretation. A smaller number of clusters allows us to have a 
clearer understanding of the characteristics and behavioral patterns of each cluster, thereby 
better evaluating the performance and effectiveness of clustered federated learning 
frameworks. The other simulation parameters are summarized in Table 2. 
 

Table 2. Simulation Parameters 

Parameter Value 
batch size 100 
learning rate 0.01 
optimizer SGD 
the number of vehicle users 30 
the number of clusters 5 
momentum 0.9 

5.1 Datasets 
The performance of the proposed clustered federated learning framework is evaluated on the 
20 newsgroups dataset [20] and the MNIST dataset [21].  
1. The 20 newsgroups dataset: This dataset contains approximately 20000 articles and is 
divided into two parts: a training set and a testing set, with about 60% of the articles being 
used for training and 40% for testing. The data mentioned is utilized to simulate attribute-
based unstructured data generated within urban vehicle networks. This encompasses 
configuration files and status log files of various vehicle applications. 
2. The MNIST dataset: This dataset is a widely used handwritten digit recognition dataset that 
contains 60000 28x28 pixel grayscale images for training and 10000 for testing. We use this 
data to simulate the image information collected by vehicles in urban vehicle networks, such 
as road condition information and vehicle sign information.  

The MNIST dataset is a widely used benchmark dataset in the field. In the context of the 
IoV, the MNIST dataset can be used to simulate image data collected by vehicles, such as road 
condition information or traffic sign recognition, showcasing the applicability of the 
framework to visual data processing tasks in vehicular environments. By using the 20 
newsgroups dataset, the framework can simulate attribute-based unstructured data generated 
within urban vehicle networks, demonstrating its effectiveness in processing textual 
information in vehicular environments. The choice of these datasets aligns with the goal of 
demonstrating the framework's capability to address privacy concerns and enhance data 
processing in connected vehicle scenarios. 

5.2 Models and Baselines 
Convolutional Neural Networks (CNNs) are employed to train local models. In the case of 

the MNIST dataset, two two-dimensional convolutional layers are utilized to extract image 
features. Following this, the output of the convolutional layer undergoes activation via an 
activation layer, after which the feature map's size is reduced using a pooling layer via the 
Downsampling operation. Simultaneously, a Batch Normalization (BN) layer is introduced to 
standardize the data within each batch during the model training process. This standardization 
helps maintain relatively stable data distributions within each layer, accelerating the model's 
convergence. For the 20newsgroups dataset, the text is first converted into a word vector, 
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which is input into the model through the embedding layer. The word vector undergoes 
convolution via a one-dimensional convolutional layer to extract features. Subsequently, the 
output of the convolutional layer is activated and subjected to pooling, and various other 
operations. The outcome from the pooling layer is flattened and subsequently input into the 
fully connected layer. 

We compare the method proposed in this paper with FedAvg [7], Fedrep [22], Fedprox [23], 
SCAFFOLD [24] and Text GCN [25]. FedAvg is used for training on multiple devices or data 
centers and merging model updates from all devices or data centers without sharing the 
original data. Fedrep is a dimensionality reduction algorithm that uses a base layer to learn 
global feature representations between data, in order to alleviate the impact of Non IID on 
model training. The personalized layer is used as the unique local head for each client to 
implement personalized optimization algorithms. Fedprox is a federated optimization 
algorithm that utilizes the proximal term and local training model deviation from the initial 
model in Non-IID situations, resulting in significant statistical heterogeneity differences. 
SCAFFOLD is a new federated optimization algorithm that overcomes gradient differences 
by introducing server control variables and client control variables, effectively alleviating 
client drift. Text GCN is a graph convolutional neural network model. It is an improvement 
on the traditional bag-of-words model and the sequence-based model. It can use the 
relationship between words to represent the Semantic information in the text better.  

5.3 Experimental results 
Fig. 3 shows a schematic diagram of the clustering results, showing the clustering situation 

of 30 vehicle clients at an intersection, where coordinates (50, 50) represent the intersection. 
The proposed algorithm is used to cluster the vehicle positions and select the optimal vehicle 
as the cluster head to communicate with the RSU. The colors of each cluster are different, and 
the red circle represents the cluster head of each cluster.  

 

 
Fig. 3. Clustering Results 

 
Fig. 4 shows the average throughput at speeds ranging from 20 to 70 km/h, and our 

proposed algorithm has an average throughput range of (0.57 to 0.59 Mbps). As shown in the 
figure, our proposed method performs better than the other two methods by randomly selecting 
small batches of data for updates, thereby reducing memory usage and computational time. 
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Fig. 4. Average Throughput 

 
 

The circular representation in the figure illustrates that throughout the entire simulation 
duration when the Cluster Head (CH) attains the directional threshold point and a new CH is 
chosen, it results in an enhancement of the average throughput. The selection of new CHs at 
distinct points (threshold points) induces variations in the average throughput.  

 
 

 
Fig. 5. Accuracy of MNIST dataset and 20newsgroups dataset 
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Fig. 6. Comparison of Accuracy on Different Datasets 

 
We evaluated the performance of our proposed scheme on the MNIST dataset and the 

20newsgroups dataset, respectively. Fig. 5 shows the accuracy of various datasets, indicating 
that our proposed scheme exhibits good performance. Because clustering federated learning 
does not require the transmission of model parameters from all vehicle clients, only the 
parameters of the cluster head, it reduces communication overhead and improves training 
accuracy. The model training accuracy achieved 99.8% on the MNIST dataset and 92.42% on 
the 20newsgroups dataset. As shown in Fig. 6 and Fig. 7, we also compared the accuracy of 
model training under different baselines. In the MNIST dataset, the training accuracy of our 
proposed algorithm improves with the increase of training rounds and consistently 
outperforms other baselines. In the 20newsgroups dataset, our proposed method has an 
accuracy improvement of 6.08% compared to Text GCN.  

 
Fig. 7. Evaluations of accuracy over different algorithms 
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6. Conclusion 
In this paper, we mainly explore a secure and efficient communication algorithm for wireless 
FL in IoV. Considering the communication bottleneck, a novel clustering-based FL framework 
is proposed in this paper. On the one hand, by dividing vehicles into different clusters based 
on the similarity of pre-trained feature vectors, it avoids the high communication cost caused 
by the transmission and update of model parameters between each vehicle and RSU. On the 
other hand, the LDP mechanism is incorporated during local training to safeguard vehicle 
privacy. The experimental results show that the accuracy of this scheme has been improved 
by 6.08% on the 20newsgroups dataset and 1.6% on the MNIST dataset, demonstrating its 
effectiveness and accuracy. This method can provide novel ideas and approaches for vehicle 
data processing and privacy protection.  

We will focus on the proposed framework's ability to handle many vehicles and different 
data types in dynamic vehicle environments in future work. This will involve optimizing 
algorithms and system architecture to ensure effective transmission, processing, and updating 
of models in large-scale vehicle networks. We will conduct on-site tests or simulations in real 
driving scenarios to evaluate the performance of the framework, its impact on driving safety, 
and its practicality. 
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